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HEAT LIBERATION OF A MIXING LAYER OF LOOSE MATERIAL IN A VACUUM 

A. G. Zeberin, V. V. Kornaraki, 
and G. Ya. Pipkevich 

UDC 536.255:535.5 

Heat exchange is studied between a dense mixing layer and a surface under conditions of 
high (<10 -2 Pa) vacuum. The layer heat-liberation coefficient is determined by a method 
based on solving the problem of cooling of a compact isothermal mass, the upper part of 
which is under conditions of radiant heat exchange with the surroundings; and the lower part 
of which is under conditions of radiant and conductive heat exchange with an enclosing sur- 
face. The heat-exchange surface in the experiments was maintained at the temperature of 
boiling nitrogen. The temperature of the layer, the intensity of mixing, and the dispersion 
of the material were varied. The material used was four narrow fractions of type MSB micro- 
spheres of superhard lead glass. 

Some results are shown in Fig. i. The study presents the dependence of the heat-libera- 
tion coefficient on mixing speed and particle size. On the whole, the coefficient values 
agree with those known from other studies. A positive relationship between the heat-libera- 
tion coefficient and layer temperature was observed, which, however, was not unambiguous. 
For coarse fractions, the heat-liberation coefficient undergoes saturation with increase in 
mixing speed, which confirms the results of [i]. However, for the other fractions in the 
range studied, there appears only a tendency to saturation. 
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EFFECT OF NEGATIVE PRESSURE GRADIENTS ON BOUNDARY-LAYER 

CHARACTERISTICS IN GAS FLOW IN TUBES 

V. N. Panchenko UDC 532.542 

Turbulent adiabatic gas flow in a round tube with infrasonic velocity at the input and 
crisis at the exhaust is studied. 

Experimentally obtained longitudinal velocity profiles [i] are used to calculate the 
boundary-layer thicknesses d* and d**, the velocity profile form parameter H = ~*/6"*, and 
the number Red** for the developed turbulent flow segment. The longitudinal velocity pro- 
file u is approximated by a power function 

u ~ u l ~ " ,  (I) 

where the exponent n, according to the data of [i], decays rapidly, reaching a value on the 
order of 1/15 at the exhaust for a Reynolds number Re ~ 5.5.10 s. 

Calculations revealed that the thicknesses 6" and 6** decrease with increase in x, and 
the form parameter H increases with increase in the pressure-gradient parameter 

6** ] dP 1 
~** = ~ , - -  I d-T" " 

Filling of the velocity profile upon approach to the exhaust leads to an increase in 
surface friction To and, consequently, to an increase in the friction coefficient 

2~o (2) cf - -  plu~ 

with a decrease in Red** (Fig. i). The To values required for determination of cf with Eq. 
(2) were determined by the method described in [2]. 

The character of the change in H, Red** , and the coefficient cf qualitatively indicate 
the phenomenon of reverse transition in the flow of the compressed gas in the tube. 
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Fig. i. Friction coefficient cf versus 

Red**. 

NOTATION 

cf, friction coefficient; 6*, displacement thickness; d**, momentum loss thickness; H = 
d*/6**, velocity profile form parameter; dp/dx, pressure gradient; Re, Reynolds number; u, 
longitudinal velocity component; x, longitudinal coordinate; y, transverse coordinate; 0, 
density; T, tangential stress. Indices: 0, tube wall; i, tube axis. 

i. 
2. 
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METHOD OF DETERMINING THE SURFACE TEMPERATURE OF A SPHERE 

A. V. Kryanev, E. V. Saperov, and V. K. Fardzinov UDC 536.24.02 

The problem formulated in this study is one of the class of incorrectly placed problems 
and concerns determination of the surface temperature of a sphere from measurements per- 
formed outside the sphere. To solve such problems a suitable regularizing algorlthmmust be 
found. In a number of cases, finding this algorithm is complicated, since the desired func- 
tion, the sphere temperature Ts(T) , is not a sufficiently "smooth" monotonic function. For 
example, during the time period in which we are interested the changes in sphere temperature 
TS(T) may have one, two, or more 'bulges," whose amplitude and change characteristics also 
may be unknown. Calculation methods for "smooth" cases do not permit a sufficiently accu- 
rate solution of such a problem. 

For this solution we propose an algorithm which permits use of a priori information on 
the desired function in the following form: 

(x) = Tap (x)Y(x), 

where Tap(T) is a function specified a priori and reflecting the character of the change in 
the desired function; y(T) is a correction considering the nonmonotonicity of the function. 

We assume that y(T) is a smooth function and can be determined with the aid of smooth- 
ing regularizing algorithms. 

When it is difficult to clarify the character of the change of the desired function, it 
may prove useful to initially use the regularized method of successive approximations to ob- 
tain an approximate solution to the original equation. Then, setting Tap(T) E T~*](T) we 
perform a second calculation with the algorithm proposed here. 

If the desired function Ts(T) is a sufficiently "smooth" monotonic function, the pro- 
posed algorithm offers no advantages over usual solution methods, for example, the method of 
successive approximations. 

Analysis of the numerical results obtained showed that, in the presence of "bulges" in 
the desired function, over the time interval considered the proposed method permits more ef- 
fective processing of measurements and establishment of the function Ts(r) with very high 
accuracy. 

Dep. 1083-77, February 14, 1977. 
Original article submitted July 16, 1976. 

METHOD OF CALCULATING THE THERMAL REGIME IN CRYOSTATS 

WITHOUT NITROGEN COOLING 

L. A. Grenaderova, V. G. Dan'ko, 
G. A. Mushkina, and L. V. Nevenchannyi 

UDC 536.483:621.313.322-81 

A method has been developed for calculation of thermal fields and liquid-coolant ex- 
penditure in a cryostat whose thermal bridges are cooled by a cold gas formed by boiling of 
a cryogenic liquid. The construction method considered has been used in a model of a 200- 
kW experimental cryoturbogenerator [i]. 

The method permits consideration of lateral external heat intake, variability of thermal 
bridge section over length, the temperature dependence of the heat-transfer coefficient of 
the cryostat wall with the gas, and the dependence of all thermophysical characteristics of 
the materials on temperature. 

The internal wall of the vacuum sleeve, whose temperature field must be determined, is 
divided into three sections according to heat-exchange conditions (Fig. I). The first re- 
gion 0 ~ x ~ Z, is bounded by liquid helium, and the thermal flux from its surface evaporates 
the liquid; the second region --Z, ~ x~Z2 is in direct contact with the baffles maintaining 
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Fig. i. Diagram of cooled regions. 

the liquid in place. We will neglect the thermal flux leaving the sleeve into the baffle, 
assuming that the thermal flux passes through this region unchanged. The third region la 
x ~ L is a slit-shaped channel formed by the walls of the vacuum sleeve and the thermal 
flanges. Cold gas formed by evaporation of the cryogenic liquid passes along this channel 
and cools the thermal bridges. 

The thermal-conductivity equation for the first region is AT = 0; for the second region, 
we have the requirement of constancy of thermal flux with continuity conditions for the 
function T(x) on the boundaries of the regions (at points x = 11 and x = /z). For the third 
region we solve the system of thermal-balance equations. The difference in thermal fluxes 
P(x) through sections x and x + Ax in this region departs from the surface located between 
these sections and goes to heat the gas passing through the channel. 

The problem is solved as follows. Given an arbitrary T(/a), we find the temperature 
distribution and liquid-coolant flow rate Q in the first region analytically. In the second 
region the temperature changes by a linear law. Then, knowing T(x), Tb(x) , and dT(x)/dx on 
the boundary of the third region (at x = l=), from the thermal-balance equation we find the 
temperature distribution of the wall and gas along the entire channel by the method of suc- 
cessive steps. Comparing the calculated temperature value with that specified, we refine 
the arbitrarily chosen temperature T(/a), etc., until these values coincide with satisfactory 
accuracy. 

The problem was solved numerically on a Minsk-22 computer. 

An experimental study was also performed of the end segments of a cryostat with various 
constructional variants of the thermal flanges. Divergence between calculation and experi- 
ment was insignificant and within the limits of experimental error. 

The good agreement between calculation and experiment confirms the possibility of wide 
use of the proposed method for further study of heat transfer in cryostats, not only in the 
static state, but in rotation as well. 
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EFFECT OF POWER INSTABILITY ON THERMAL REGIMES IN 

E~ECTRON-BEAM PROCESSING 

V. K. Alekseev, V. V. Makarychev, 
and D. I. Cherednichenko 

UDC 620.18:621.791.85 

One of the basic parameters of electron-beam processing is the stability of beam power. 
A slight increase in energy or duration of the beam action produces a marked change in the 
dimensions of the melt zone in microdoping of semiconductors. Power pulsations also 
lead to waviness and inhomogenelties in the processed surface in polishing of monocrystals. 
On the other hand, the quality of beam processing depends not only on beam parameters, but 
on the thermophyslcal properties of the materials being processed. With growth in intensity 
of the irradiation, heat is liberated so rapidly that it cannot be dissipated by thermal con- 
ductivity, so that under these conditions one of the dominant factors affecting processing 
kinetics is the latent heat of evapor~tlon. The critical energy density, at which the 
transition to the evaporation regime qccu~s for materials with poor thermal conductivity and 
low heat of evaporation, is low, and even small pulsations may lead to a Spontaneous transi- 
tion from the melting to the boiling regime or vice versa. 

In "connection with these facts, a detailed study of the thermal regime in processing in 
the presence of beam-power instability is of great interest. This study obtains formulas 
for determination of temperature-pulsation amplitude with a given instability, and quantita- 
tive estimates are performed for materials with varying thermophyslcal properties. 

Considering the Gaussian distribution of energy over the beam section and the specified 
instability in the form of harmonic pulsations, for determination of temperature-oscillation 
amplitude at the maximum temperature point (r = 0) we have 

a+i~ 
(0, z) = - ~  q~ ~-exp[--(~x-~-i~)']exp(i2cxzt/'~-') {I " - ~  i', (~176 exp(-2Cxz| ~-) ' 

0 

] / /~o where ct = ~ ; fi = a - -  z~Fk - . 

Calculations performed with this formula show that at a beam power of i0 ~ cal.cm-2-sec -~ 
and 5% instability the temperature-oscillation amplitude comprises 4, 20, and 70~ in copper, 
germanium, and quartz, respectively. 

It follows from analysis of the calculations that materials with low thermal conductiv- 
ity are especially sensitive to pulsations, so that special requirements must be specified 
for the electron-beam equipment in their processing. 

Dep. 1080-77, December 14, 1976. 
Original article submitted March 31, 1975. 

TRANSPORT AND SURFACE DRYING OF MOIST ROCK PIECES IN A 

THERMODYNAMIC OVERLOAD DEVICE 

V. N. Lozinskil, Yu. S. Pukhov, and Yu. D. Khechuev UDC 622.271:622.648 

The effectiveness of using equipment, especially belt conveyors, is severely degraded 
by transport of very moist g~,mmy rock. The adhesion of rock onto vessels and belts leads to 
a sharp increase in downtime and a drop in productivity of transport complexes. Existing 
methods and mechanisms for combatting rock adhesion in especially complex geological situa- 
tions are not very effective. 

One of the promising methods of preventing rock adhesion is intense surface drying of 
the rock by high-velocity hot gases of a reactive motor in the process of transporting the 
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pieces in the turboduct of a thermodynamic overload device. The study presents a diagram 
of the device. The rock being loaded is picked up by the gas flow, transported along the 
tube, and dried on the surface. To reduce the resistance of the rock, the pieces being 
transported should move in the suspended state, which is ensured by at least a minimum crit- 
ical gas-flow velocity 

- 1/2  g Vma x ~ ~ p  r c y p S p  " 

The gas velocity which will ensure the necessary thickness of the dried layer on the surface 
of the pieces is given by 

V i l l a  X - -  
,~t I" eP~tu~(W,,--Wp) 3 ]~.2 [d k - -  (dp- -  2he) z 

dp '1 0.023%~p (T T - -  T17,. "~ -k ~-'A4D 0.33 "~ 

The final velocity of the rock pieces depends on their size, 
flow parameters. 

the duct length- and the gas- 

Vma• ~ / cxO S-P_ L 
y mp 

Vpf 

r mp 

Experiments were performed with an experimental thermodynamic device using an RD-3M re- 
active motor. Rock of 25% moisture in pieces up to 350-400 mm in diameter was loaded. The 
turboduct length was 50 m, with a diameter of i000 mm. Rock-flow output was 1500-2000 m3/h. 
Gas flow in the tube reached 180-200 m/sec. The rock pieces were transported in the suspended 
state (their velocity reached 20-60 m/sec) and were dried to a depth of 1.5-2 rm~, and surface 
moisture was not reestablished over the course of 1.5-2 h, eliminating adhesion. 

The results of experimental and semiindustrial experiments show the technological pos- 
sibility of using thermodynamic overload devices with reactive motors for intense surface 
drying of wet rock to eliminate the causes of adhesion in transport media. 

Dep. 1079-77, November 22, 1976. 
Original article submitted October 4, 1974. 

CONVECTIVE DRYING KINETICS AND SELECTION OF INDUSTRIAL REGIMES 

V. A. Kurochkin UDC 66.047 

The problem of the kinetics of convective drying of disperse materials in the initial 
period is considered. The analysis performed uses the postulate of instantaneous onset of 
the saturated state of the gas in the boundary layer of the particle or object being dried. 
This postulate is valid in the presence of free moisture on the surface of the material being 
dried. 

Using a method developed previously by the author for analysis of drying kinetics in 
parallel flows by means of the auxiliary characteristic Ko = AI/~X, it is possible to solve 
the problem of determining drying parameters in terms of the drying-temperature coefficient 
and the Rebinder criterion. For an arbitrarily specified moment in time we find 

a_~f~ , _ K o + c rn ~, ~ = KS , ( 1 )  

~=o Cma t -1- Cm. ~ 

Rb = C'~nd~_ --0 tf~ Cma.-----L,. ( 2 )  
r*du ~=o r* 
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U1 d~= -- d/, (3) 
C2 

where 

(1 + Rb) r*lx 

The quantities appearing in Eqs. (i)-(3), ~, u, t, I, X, c* h, C*ma t, c m, r*, and W repre- 
sent, respectively, temperature and moisture content of the material; temperature, enthalpy, 
and moisture content of the heating agent; heat capacity of the heating agent and material; 
moisture and heat of evaporation of the moisture; and concentration coefficient of the flows. 

A concrete example is used to demonstrate the significant effect of the initial period 
of disperse material drying on the overall course of the process. 

The equation for drying kinetics in parallel flows, determining the heating-agent energy 
expenditure for heating of the moist material and its drying, can be used for selection of 
industrial regimes, for example, in tunnel dryers. It is shown that experiments on regime 
selection should be begun by relating the regime to the concrete parameters of the drying 
equipment and determining mass concentration of the material, product, and heating-agent 
flows. 

Dep. 1161-77, February 28, 1977. 
Original article submitted August 5,1975. 

SOLUTION OF REVERSE BOUNDARY PROBLEM FOR THE THERMAL-CONDUCTIVITY 

EQUATION BY THE METHOD OF DETERMINED MOMEN~rS 

I. B. Basovieh UDC 536.24.02 

This study considers the reverse boundary problem of determining the thermal-conductiv- 
ity coefficient of an inhomogeneous medium by measurements of temperature and thermal flux 
at boundary points. The equation of heat propagation and the system of boundary conditions 
have the form (with the coefficient of volume heat capacity considered constant and taken as 
unity for simplicity) 

au o x (x )  - ( 1 )  
o r  - -  o~ ~ ' 

Ou I 
ut= o=0,  Ux= L=O, ux.=_ o=uo(t), ~.(0) ~ x  [x=o=q(/)' 

where %(x) is the unknown thermal-conductivity coefficient. 

Mathematically analogous problems also occur in the theory of liquid filtration through 
inhomogeneous porous media. We denote by x n and 7n determined moments of temperature and 
thermal flux [i] 

�9 . = , , , o  (0  t " d t .  Vn = q (0  t " d t , .  = O, ,, z . . . .  i~.2. 
o b 

If the function q(t) is nonzero for a finite time interval, the integrals of Eq. (2) converge. 
We will consider iterated Green integrands Gn(x, xx) of the Sturm-Liouville operator on the 
right side of Eq. (i): 
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Xl 
Oo (x, x~)= ] L 

] ~ ~.-l(x)dx, x~<x. 
tx 

(3) 

Higher order integrands are determined from the recurrent relationships 

L 

G~ (x, xl) = ~ 6~-1  (x, ~) Go ('L xO d~, n : I, 2 . . . .  
0 

(4) 

Using the results of [2] for iterated Green Integrands we obtain a diagonal system of linear 
equations 

n-]-I 
Tlz= - - X  17, 

m=l (n--re.-+. 1)! 
?n-7.+lOm-1 (0, 0), n = O, 1,2 . . . .  (5) 

From Eqs. (3)-(5) we can obtain expressions relating the unknown thermal-conductivity coef- 
ficient l(x) with the determined temperature and thermal flux moments. 

In practical calculations of the determined moments the infinite integration interval 
is replaced by a finite one. An estimate is obtained of the error thus produced as a func- 
tion of certain a priori constants limiting the thermal-conductivity coefficient and thermal 
flux value. Use of the determined moment method for solution of reverse problems is illus- 
trated with the example of a piecewise-constant thermal-conductivity coefficient. 

For the case indicated the regularity of the algorithm is proven in the presence of 
errors in the initial data. Results of the present study obtained for one-dimensional para- 
bolic equations remain valid for axisymmetric problems. 

NOTATION 

u(x, t), temperature; t, time; x, spatial coordinate; l(x), thermal-conductlvity coeffi- 
cient; Tn, Yn, determined moments of temperature and thermal flux; Gn(x , x~), iterated Green 
integrands. 

LITERATURE CITED 
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THREE-LAYER PROBLEM OF HEATING A THERMAL MAIN BY THE 

HEATING AGENT BEING TRANSPORTED 

V. S. Shargorodskii, A. N. Kovalenko, and I. S. Tsvetkova UDC 536.242 

The temperature problem of a thermal duct is examined with consideration of the inter- 
action of layers of thermal insulation, metal, and heating agent, using the following formu- 
lation: 

a r m  = a m  r q ~'~ r ~ r~, aT ar r T r  ] ' ( i )  
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Equation (i) 

= - r , r ,<r<<.r , ,  
Ot r Or 

%~h,v~ ~ o~ orb -~-t dt = {cllCJh[th-- (lh-F -~z dz)]-- 2=,~t (lh-- t~ ,. ) 

a/m ~' a'i'l ~' l 
-- Or r ,  = -~m (th- tml r , ) '  -- O~ r ,  - -  kin * ~m r ,  ' 

za_~ 
lrls Or It, ' 

t m ~ = o  = t i n~=o  = t ree  d = O, th[,= o = t h o .  

is solved with the expansion 

dz ~ dr, 

(1) 

Rk,(r), t i m =  
k=O k ~ O  

(2) 

As a result, recurrent equations are obtained for the radial functions Rkm and Rkins: 

I I 

R m- S+SrR(k-omdrdr, Rkins - 
am aim s 

---] rl---- ~ rR(k-,)i~drdr 

The problem is then solved using Laplace transforms: 

(3) 

T(s)~=: lexp(- -~)d t ,  T m = ~ S ~ T ,  Rkm . Ttns----~:T2Rkins,  
0 k = O  k = O  

T h = Tho exp (-- r exp [t ( w l r ,  -- 

<-~ R .~ km 
Of, w= k=o 

~ kS k 
k = O  

~m ar~Yhz 
oh = ekn~r,)-- ,~--$. 'P = Oh 

chGh 

(4) 

The transformation to the original variables is accomplished with limitation to two or 
three terms in the transfer function W in light of the good convergence of the series 

t h: exp (- g) ~( d~h~ +tho )exp0l-~)lo[2J/([-~)0]-~) ]dl*. 
o J ~ dq 

~ = :~1-- R,m Qo ~" i Qo-- Rom_. 
~ ,  , tl = - ~ ,  ( t  - -  ~ ) ,  = Qo " 

(.5) 

The study presents finite formulas convenient for engineering use, and a nomogram of 
duct temperature fields for discontinuous and linear laws of tho change in the duct input 
section, as well as a comparison of solutions using different numbers of terms in the trans- 
fer function. The results permit evaluation of the effect of heat accumulation on the metal 
and insulation, and the effect of insulation quality on heatlng-agent temperature change. 
The duct length can thus be evaluated in this respect. 

NOTATION 

t, temperature; r, z, coordinates; T, time; ~, c, y, a, thermophyslcal properties of 
materials; G, heatlng-agent flow rate; e, heat-llberation coefficient. Indices: m, metal; 
ins, insulation; h, heating agent; med, medium; 0, initial duct section; i, 2, 3, boundaries 
between materials. 

Dep. 1160-77, February 25, 1977. 
Original article submitted November ii, 1975. 
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STABILITY OF A SHEAR LAYER OF DILATANT LIQUID WITH SUCTION 

L. i. lonochkina, S. L. Simkhovich, 
and N. V. Filin 

UDC 532.51:532.135 

The hydrodynamic stability of a shear layer of dilatant liquid above a porous plate 
moving with a constant velocity Uo in the presence of constant suction with a velocity Vo is 
analyzed within the framework of the linear theory. Here the dimensionless velocity profile 
of the shear layer has the form 

n 

u (y) =- (1 + y)'~-~, ( i )  

• K~ '14 is the character- where Uo is the characteristic velocity of the plate, L-- ~ ( - I  p%u~-" } 

istic size, determined from the condition U(--l) = 0, and L + 0 as Vo § 0. 

The study of the hydrodynamic stability of such flow comes down to the solution of an 
equation of the Orr--Sommerfeld type for the amplitude of a perturbation ~(y) in the stream 
function ~(x, y, t) = ~(y) exp [i~(x- ct)]: 

f , - -  Ren (, (D"- - -  &-) D ,  (--l<y<0). (2)  

Here 

Re n 

law, 

n--3 

E (U (b9 - -  C) (D 2 0:2) __ D2U @ i[(DU)O.] 2 -- < (DU) 2 n (D 2 - o r  z ) -  
]~er~ 

@ (n - -  1) [2n (DU) (D~U) D ~ -~ [4&" (DU) z @ n (DU) (D3U) @ n (n @ 2) (O2O) ~-] D z @ 

d 
@2 (n - -  2) ~z~ (DU) (DzU) D @ c~2n [(DU) (D3U) @ (n - -  2) (D3U)2]I > ; D~- 

@ 

= (0ua-nL)/Kn is the generalized Reynolds number for a liquid witha power-] aw rheological 

The boundary conditions for Eq. (2) consist in the equality to zero of both components 
of the perturbed motion at the wall y = 0 and at a large distance from the wall y =--~: 

~(o) = ~ ' ( o ) =  o; ~ ( -  ~ ) = ~ ' ( - , ~ ) = o .  (3) 

At the point y = --i the viscous flow is joined with the external flow, where U = const. 
The equation for the perturbation ~(y) in the external flow is written in the form 

(D 2 __ a 2 ) ,  = 0. (4)  

The solution of Eq. (4) satisfying the conditions (3) has the form ~ = Ae-aY, so that in the 
solution of Eq. (2) one must require that the following condition be satisfied at y = --I: 

d~ 
a--v- + ~* = o. ( 5 )  

The condition of nontriviality of the general solution of Eq. (2), written with the 
help of the conditions of attachment (3) and the condition (5), leads to a secular equation 

I 2 which, after its terms are estimated in order of magnitude (aRCh)- / , can be represented 
in the form 

i ~ (o) ~ (o) I 
' D~I (-- 1) -[- ct~l (-- 1) D~b~ ( - -  1) - ,  ct% (-- 1) __ % (0) ( 6 )  

i D , ,  (0) D*2 (0) } D%(O) 
Dq~, (-- I) -5 czqh (-- l) D~. (-- 1) -1- czq~ 2 (-- 1) 
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Fig. i. Curves of neutral stability 
in the a, Re n plane. 

The solution of the secular equation (6) allows one to construct curves of neutral 
stabillt~. 

The curves of neutral stability in the a, Re n plane constructed for the rheological 
numbers n = 1.4, 1.5, 1.6, and 1.8 are presented in Fig. i. It is seen that the curves 
shift to the left with an increase in the number n. This is evidently connected with the 
flattening effect of the rheologlcal number n on the velocity profile of the main flow. 

NOTATION 

Uo, velocity of plate motion; Vo, suction velocity; u(y), velocity profile of shear 
flow; n, kn, rheological constants; L, characteristic size; ~(y), amplitude of stream func- 
tion; ~(t, x, y), stream function; a, wave number; C, velocity of propagation of distur- 
bances; D = d/dy, differential operator; ~i (i = i, 2, 3), particular independent solutions 
of the equation of the Orr--Sommerfeld type; Ren, generalized Reynolds number. 

Dep. 1163-77, February 28, 1977. 
Original article submitted October 12, 1976. 

DISSIPATION HEAT FLUX FROM A CONDUCTING CONE TO A CONDUCTING PLANE 

M. A. Gintsburg and Yu. N. Khromets UDC 699.86:697.12/13 

The following problem is solved. Two coaxial cones of thermally conducting material 
have different temperatures T, and Tz. Their apices coincide geometrically but are separated 
physically by an infinitely thin layer of ideal insulation, allowing the temperatures of the 
cones to be kept different. The heat flux from one cone to the other, the temperature dis- 
tribution in the region between the cones, and their thermal resistance are found. 

Such a problem has numerous applications. We can name some of them, such as the calcu- 
lation of thermally conducting inclusions in layers of thermal insulation. When a layer is 
broken by a metal bolt to give the structure the required strength the bolt is usually in- 
sulated in order not to form a "cold bridge." One obtains a structure in the form of a con- 
ducting sheet with an opening through which the bolt passes, nowhere touching the walls (gf 
thermal insulation). But the thermal resistance of such a system is by no means infinite: 
It is determined by the dissipation flux from the conducting sheet to the bolt (Fig. i). 

We replace the plane--bolt system with a system of two cones, one with a small aperture 
angle tan 0, = ~, << i, which approximates the bolt; and the other with an aperture angle 
tan 82 = ~2 >> i, which approximates the sheet. 

This is the solution of the problem: 

0 
T -~ C11n tg---- ~ -{-C~ . (1) 
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The constants C, and C2 are determined from the boundary conditions T = TI at ~ = 
~2 << 1 and T = T2 at ~ = $2 >> i, i.e., 

The lines of heat flow are circles with the center at the origin of coordinates. The 
total dissipation flux through the bolt of length ~ (taking ~, << I) is 

' 2 
Qdis = 2o~l% (T 1 --T._,) / (~i In - - ~  

/ \  h / '  

and the thermal resistance is 

i 2 
R = - -  ~1 In -- 

The solution (i) is easily generalized to the case of finite conductivity of the 
material of the cones T = ZAnPn(cOs 8) + BnQn(cOs 8) and to the nonlinear case when the heat 

n 

capacity is X = Xo[l + ~(T -- T2)]. Then 

T = T 2 +  e* 1@2c~ C l ln tg  ~ -  + C  2 �9 
/ 

The constants A n and B n are determined from the boundary conditions. 
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